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Outline

• Two-level BDDC methods

– Introduction of BDDC

– two-level BDDC method formulation

– bottleneck of two-level methods

• Three-level BDDC methods in 2D

– three-level BDDC and condition number estimate

– three-level methods with Chebyshev iterations and condition

number estimate

• Three-level BDDC methods and condition number estimate in 3D

• Ongoing work
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Introduction of BDDC

• FETI family and FETI-DP: based on Lagrange Multipliers.

• Balancing Neumann-Neumann

• BDDC:

– BDDC (balancing domain decomposition by constraints)

(Dohrmann, 2003): is built from the same components as

FETI-DP.

– Convergence analysis (Mandel/Dohrmann, 2003)

– Connection with FETI-DP (Mandel/Dohrmann/Tezaur, 2004

and Li/Widlund, 2004)

– BDDC for nearly incompressible elasticity(Dohrmann, 2004),

Stokes (Li/Widlund, 2005), and for porous media (Tu, 2005)



4

Model Problem

• Consider a finite element approximation of a scalar elliptic problem

in a two/three dimensional region Ω with homogeneous Dirichlet

condition on ∂Ω

• Subdivide Ω into N nonoverlapping subdomains Ωi with diameters

Hi, i = 1, · · · , N and interface Γ

• Set up a stiffness matrix and a load vector for each subdomain
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Two-level BDDC Setup
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• The subdomain problems can be written as:
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• WΓ :=
QN

i=1 W
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• Consider three product spaces of finite element functions of nodal

values.

cWΓ ⊂ fWΓ = cWΠ

M
W∆ ⊂ WΓ

WΓ: no constraints; cWΓ: continuity at every point on Γ; fWΓ:

common values of primal variables.



6

• The global problem: find (uI , bu∆,uΠ) ∈ (WI ,cW∆,cWΠ), such that
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• An operator eSΓ : fWΓ → eFΓ, which is of the form:
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Restriction, Extension, and Scaling Operators

• R
(i)
Γ : cWΓ → W

(i)
Γ and R

(i)
Γ : fWΓ → W

(i)
Γ

• R
(i)
∆ : W∆ → W

(i)
∆ and R

(i)
Π : cWΠ → W

(i)
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• RΓ∆ : fWΓ → W∆ and RΓΠ : fWΓ → WΠ

• RΓ : cWΓ → WΓ and RΓ : fWΓ → WΓ

• eRΓ : cWΓ ⊂ fWΓ → fWΓ the direct sum of RΓΠ and R
(i)
∆ RΓ∆

•

δ†i (x) =
ργ

i (x)P
j∈Nx

ργ
j (x)

, x ∈ ∂Ωi,h ∩ Γh,

γ ∈ [1/2,∞)

• The scaled operators R
(i)
D,Γ, R

(i)
D,Γ, R

(i)
D,∆, RD,Γ and RD,∆

• The scaled operators eRD,Γ is the direct sum of RΓΠ and RD,∆RΓ∆.
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Matrix Form for Two-level BDDC and Its Bottleneck

• The two-level BDDC method is of the form
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Γ
eSΓ
eRΓuΓ = M−1
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• the preconditioner M−1 = eRT
D,Γ

eS−1
Γ
eRD,Γ has the following form:
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• The coarse level problem matrix SΠ is determined by

SΠ =
PN
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• For any uΓ ∈ cWΓ,

u
T
ΓMuΓ ≤ u

T
Γ
eRT

Γ
eSΓ
eRΓuΓ ≤ C (1 + log(H/h))2 u

T
ΓMuΓ

provided that the coefficient ρ(x) of the scalar elliptic problem varies

moderately in each subdomain.

• Bottleneck: The coarse level problem matrix SΠ is factored by a

DIRECT solver at the beginning of the computation
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Three-level BDDC Setup

• Decompose Ω into N subregions Ω(j) with diameters Ĥ(j). Each

subregion Ω(j) has Nj subdomains Ω
(j)
i with diameters H
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i . Let bΓ

be the interface between the subregions
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• The coarse problem SΠy = Ψ

• The reduced subregion interface problem:

beR
T

bΓ
eT beRbΓybΓ = hbΓ.

• eybΓ =
beR

T
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(i)−1

ΠbI bI

“
Ψ

(i)
bI

− S
(i)
ΠbI bΓ

bR(i)
bΓ
eybΓ

”

• The approximate coarse problem eSΠey = Ψ
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Three-level Preconditioner M̃
−1

• Three-level preconditioner fM−1:

fM−1 = eRT
D,Γ
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• Two-level preconditioner M−1:

M−1 = eRT
D,Γ

8
<
:RT

Γ∆

0
@

NX

i=1

“
0 R

(i)T

∆

”
0
@ A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

1
A

−10
@ 0

R
(i)
∆

1
A
1
ARΓ∆

+ ΦS−1
Π ΦT

o
eRD,Γ



12

Some Auxiliary Results

Lemma 1 Let D be a square with vertices A = (0, 0), B = (H, 0),

C = (H, H), and D = (0, H), with a quasi-uniform triangulation of mesh

size h. Then, there exists a discrete harmonic function v defined on D

such that ‖v‖L∞(D) = v(A) ≈ 1 + log H
h

, v(B) = v(C) = v(D) = 0 and

|v|2H1(D) ≈ 1 + log H
h

. (Susanne C. Brenner and Li-yeng Sung, 2000)

A(0,0) B(H,0)

C(H,H)D(0,H)
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Lemma 2 V H
i and V h

i,j : the standard continuous piecewise linear

function space with mesh size H in a subregion Ω(i) and with mesh size h

in a subdomain Ωi
j , respectively

Given u ∈ V H
i , û is the discrete V h

i,j-harmonic extension in Ωi
j such that

û = u at the vertices of Ωi
j . There exist two positive constants C1 and

C2, which are independent of H and h, such that
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‖u − α‖2
L∞(Ω) ≤ C

„
1 + log

H

h

«
|u|2H1(Ω),

where α is any convex combination of values of u(x).

Lemma 3 Let D be a cube with vertices A1 = (0, 0, 0), B1 = (H, 0, 0),

C1 = (H, H, 0), D1 = (0, H, 0), A2 = (0, 0, H), B2 = (H, 0, H),

C2 = (H, H, H) and D2 = (0, H, H) with a quasi-uniform triangulation

of mesh size h. Then, there exists a discrete harmonic function v defined

in D such that v̄A1B1
≈ 1 + log H

h
, where v̄A1B1

is the average of v over

the edge A1B1, |v|
2
H1(D) ≈ H

`
1 + log H

h

´
, and v has a zero average over

the other edges. (Susanne C. Brenner and Qingmi He, 2003)
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Lemma 4 Let Ωi
j be the subdomains in a subregion Ωi, j = 1, · · · , Ni,

and V h
i,j be the standard continuous piecewise trilinear finite element

function space in the subdomain Ωi
j with a quasi-uniform fine mesh with

mesh size h. Denote by Ek, k = 1 · · ·Kj, the edges of the subdomain Ωi
j.

Given the average values of u, ūEk
, over each edge, let u ∈ V h

i,j be the

discrete V h
i,j-harmonic extension in each subdomain Ωi

j with the average

values given on the edges of Ωi
j, j = 1, · · · , Ni. Then, there exist two

positive constants C1 and C2, which are independent of Ĥ, H, and h,

such that
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Two-level Results

• The average operator:

ED = eRΓ
eRT

D,Γ,

• Lemma 5

EDwΓ = eRT
Γ
eRD,ΓwΓ = wΓ,

for any wΓ ∈ cWΓ.

• Lemma 6

|EDuΓ|
2
eSΓ

≤ C

„
1 + log

H

h

«2

|uΓ|
2
eSΓ

, ∀u ∈ fWΓ.

• Lemma 7 The condition number for the operator with the two-level

preconditioner M−1 is bounded by C
`
1 + log H

h

´2
.
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Condition Number Estimate in 2D

• Lemma 8

| bE bDwbΓ|
2
eT
≤ C
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2
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, ∀wbΓ ∈ fWc,bΓ.

• Lemma 9 Given any uΓ ∈ cWΓ, let Ψ = ΦT eRD,ΓuΓ. We have,
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• Theorem 1 The condition number for the system with the

three-level preconditioner fM−1is bounded by

C(1 + log Ĥ
H

)2(1 + log H
h

)2.
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Using Chebyshev Iterations

• ybΓ is replaced by ybΓ,k, given by a k-step Chebyshev iteration

•
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M−1 = RT
Γ DΓ

8
<
:

NX

i=1

R
(i)T

Γ∆

“
0 R

(i)T

∆

”
0
@ A

(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

1
A

−10
@ 0

R
(i)
∆

1
ARΓ∆

+ ΦS−1
Π ΦT

o
DΓRΓ



19

Condition Number Estimate

• Lemma 11 Given any uΓ ∈ cWΓ, let Ψ = ΦT eRD,ΓuΓ. With

λj < u + l, we have

C1(k)ΨT S−1
Π Ψ ≤ Ψ

T bS−1
Π Ψ

T ≤ C2(k)ΨT S−1
Π Ψ,

where

C1(k) = min
j

„
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

«
,

and

C2(k) = max
j

„
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

«
.

• Lemma 12 Given any uΓ ∈ cWΓ,

C1(k)uT
ΓM−1

uΓ ≤ u
T
Γ
cM−1

uΓ ≤ C2(k)uT
ΓM−1

uΓ.

• Theorem 2 The condition number using the three-level

preconditioner cM−1is bounded by C C2(k)
C1(k)

(1 + log H
h

)2,
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Numerical Results(2D)

Table 1: Eigenvalue bounds and iteration counts for the precondi-

tioner M̃ with a change of the number of subregions, Ĥ

H
= 4 and

H

h
= 4 (The data in the parenthesis are for two-level cases.)

Num. of Subregions Iterations Condition number

4 × 4 12(10) 3.04(1.82)

8 × 8 15(10) 3.45(1.84)

12 × 12 17(10) 3.53(1.84)

16 × 16 17(11) 3.56(1.84)

20 × 20 17(11) 3.57(1.84)
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Table 2: Eigenvalue bounds and iteration counts for the precondi-

tioner M̃ with a change of Ĥ

H
, 4 × 4 subregions and H

h
= 4

Ĥ
H

Iterations Condition number

4 12(10) 3.04(1.82)

8 13(10) 4.17(1.84)

12 13(10) 4.96(1.84)

16 14(11) 5.57(1.84)

20 15(11) 6.08(1.84)
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Table 3: Eigenvalue bounds and iteration counts for the precondi-

tioner M̃ with a change of H

h
, 4 × 4 subregions and Ĥ

H
= 4

H
h

Iterations Condition number

4 12(10) 3.04(1.82)

8 15(13) 4.08(2.51)

12 16(14) 4.80(2.99)

16 17(16) 5.36(3.36)

20 19(16) 5.83(3.67)
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Table 4: Eigenvalue bounds and iteration counts for the precondi-

tioner M̂ , u = 6, 4 × 4 subregions, Ĥ

H
= 16 and H

h
= 4

k Relative error Iterations C1(k) λmin λmax Condition number

1 4.7382 × 10−1 24(11) 0.2857 0.2899 1.8287 6.3086(1.8380)

2 1.4296 × 10−1 16(11) 0.6575 0.6670 2.3435 3.5134(1.8380)

3 6.7034 × 10−2 12(11) 0.8524 0.9286 1.9628 3.1136(1.8380)

4 3.7750 × 10−2 12(11) 0.9377 0.9795 1.9850 2.0266(1.8380)

5 2.6839 × 10−2 12(11) 0.9738 0.9983 1.9403 1.9437(1.8380)
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More Auxiliary Results for Three Dimensional Cases

• New mesh T be a quasi-uniform sub-triangulation of Ωi (Marcus V.

Sarkis, 1994; Lawrence C. Cowsar, Jan Mandel, and Mary F.

Wheeler, 1995).

• Lemma 13

| bE bDwbΓ|
2
eT
≤ C

 
1 + log

Ĥ

H

!2

|wbΓ|
2
eT
,

for any wbΓ ∈ fWc,bΓ, where C is a positive constant independent of

Ĥ, H, h, and the coefficients of P.D.E.
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Numerical Experiments(3D)

Table 5: Eigenvalue bounds and iteration counts with the precondi-

tioner M̃
−1 with a change of the number of subregions, Ĥ

H
= 3 and

H

h
= 3

Case 1 Case 2

Num. of Subregions Iter. Cond. # Iter. Cond. #

3 × 3 × 3 9 2.6603 9 2.2559

4 × 4 × 4 10 2.8701 10 2.5245

5 × 5 × 5 11 2.9668 11 2.8074

6 × 6 × 6 11 3.0190 11 2.8477
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Table 6: Eigenvalue bounds and iteration counts with the precondi-

tioner M̃
−1 with a change of the number of subdomains and the size

of subdomain problems with 3 × 3 × 3 subregions

Case 1 Case 2 Case 1 Case 2

Ĥ
H

Iter. Cond. # Iter. Cond. # H
h

Iter. Cond. # Iter. Cond. #

3 9 2.6603 9 2.2559 3 9 2.6603 9 2.2559

4 9 3.0446 10 2.5183 4 9 2.7261 10 2.3299

5 10 3.3570 11 2.7782 5 10 2.8381 10 2.4353

6 10 3.6402 11 3.0078 6 10 2.9601 11 2.5488
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Table 7: Eigenvalue bounds and iteration counts with the precondi-

tioner M̂
−1, u = 2.3, 3 × 3 × 3 subregions, Ĥ

H
= 6 and H

h
= 3

k Iter. C1(k) λmin λmax Cond. #

1 13(8) 0.6061 0.6167 2.3309 3.7797(1.8767)

2 9(8) 0.9159 0.9255 1.8968 2.0496(1.8767)

3 8(8) 0.9827 1.0000 1.8835 1.8836(1.8767)

4 8(8) 0.9964 1.0016 1.8854 1.8825(1.8767)

5 8(8) 0.9993 1.0009 1.8797 1.8780(1.8767)
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Table 8: Eigenvalue bounds and iteration counts with the precondi-

tioner M̂
−1, u = 3, 3 × 3 × 3 subregions, Ĥ

H
= 6 and H

h
= 3

k Iter. C1(k) λmin λmax Cond. #

1 15(8) 0.5000 0.5093 2.0150 3.9562(1.8767)

2 10(8) 0.8571 0.8678 1.9744 2.2753(1.8767)

3 8(8) 0.9615 0.9900 1.8821 1.9012(1.8767)

4 8(8) 0.9897 1.0015 1.8955 1.8927(1.8767)

5 8(8) 0.9972 1.0020 1.8903 1.8866(1.8767)
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Ongoing Work

• Using PETSc to code three-level BDDC

• Three-level BDDC for elasticity etc
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